KENDRIYA VIDYALAYA SANGATHAN (PATNA REGION)

 SUMMATIVE ASSESSMENT-II, (2015-16)

 SUMMATIVE ASSESSMENT-II, (2015-16)

 MARKING SCHEME

 MARKING SCHEME

 (Expected Answer/Value points)

 (Expected Answer/Value points)}

1. 162.5
2. $P(E)=\frac{3}{6}=\frac{1}{2}$
3. 18
4. $96 \mathrm{~cm}^{2}$
5. Draw an angle 105°
6. $k \sqrt{ } \mathrm{r}^{2}+\mathrm{h}^{2}$
$=\sqrt{ } 5^{2+12^{2}}$
$=\sqrt{25+144}$
$=\sqrt{169}=13 \mathrm{~cm}$
7. Vol. of Cylinder $=\pi r^{2} h$

$$
\begin{aligned}
& =\frac{22}{7} \times 7^{2} \times 14 \mathrm{~cm}^{3} \\
& =2156 \mathrm{~cm}^{3}
\end{aligned}
$$

8. Perimeter $=250 \mathrm{~m}$
$2(1+b)=250$
Cost of Painting the four Walls= Rs 15000

$$
\begin{align*}
& \text { Area of four Walls }=\frac{15000}{10} \mathrm{~m}^{2}=1500 \mathrm{~m}^{2} \\
& \text { Area of four Walls }=2(1+\mathrm{b}) \mathrm{x} \mathrm{~h} \\
& \therefore \quad 2(1+\mathrm{b}) \times \mathrm{h}=1500 \\
& \\
& \quad 250 \times \mathrm{h}=1500 \tag{1}\\
& \therefore \mathrm{~h}=\frac{1500}{250}=6 \mathrm{~m}
\end{align*}
$$

9. Volume $=\frac{1}{3} \pi r^{2} \mathrm{~h}=\frac{1}{3} \times \frac{22}{7} \times \frac{7}{4} \times \frac{7}{4} \times 12=\frac{77}{2} \mathrm{~m}^{3}$

Hence capacity of the pit $=\frac{77}{2}$ kilolitres

$$
=38.5 \text { Kilolitres }
$$

10. Surface area of sphere $=154 \mathrm{~cm}^{2}$

$$
\begin{array}{lc}
\Rightarrow 4 \pi \mathrm{r}^{2}=154 \mathrm{~cm}^{2} & 1 \\
\Rightarrow \mathrm{r}=\frac{7}{2} \mathrm{~cm} & 1
\end{array}
$$

11.Given, to prove, construction, figure 1
Proof of theorem 2
12. Given, to prove, construction, figure

Proof of theorem
13. Given: $\mathrm{AP}||\mathrm{BQ}|| \mathrm{CR}$

To Prove: $\operatorname{ar}(\mathrm{AQC})=\operatorname{ar}(\mathrm{PBR})$
Proof: $\triangle \mathrm{AQC}, \triangle \mathrm{PBR}$ are on the same base BQ between the same parallels AP and BQ
$\operatorname{ar}(\mathrm{ABQ})=\operatorname{ar}(\mathrm{PBQ})$
Similarly, ar $(\mathrm{BQC})=$ ar (QBR) —— (2)
Adding (1) and (2), get $\operatorname{ar}(\mathrm{AQC})=\operatorname{ar}(\mathrm{PBR})$

1
14.

Let $\mathrm{QR}=x$
PR $=4-x$
In right \triangle ARP,

$$
\mathrm{AR}^{2}=5^{2}-(4-x)^{2}
$$

In right $\triangle A R Q$,

$$
\mathrm{AR}^{2}=3^{2}-x^{2}
$$

$$
\begin{aligned}
\therefore 5^{2}- & (4-x)^{2}=3^{2}-x^{2} \\
\Rightarrow & 9-x^{2}+8 x=9-x^{2} \\
\Rightarrow & 8 x=0 \\
\Rightarrow & x=0 \\
& \therefore \mathrm{AR}=3 \mathrm{~cm} \\
& \therefore \mathrm{AB}=2 \times \mathrm{xR}=2 \times 3=6 \mathrm{~cm}
\end{aligned}
$$

15. Reflex $\angle \mathrm{POR}=2 \angle \mathrm{PQR}$

$$
=2 \times 100=200^{\circ}
$$

Now LPOR $=360^{\circ}-200^{\circ}=160^{\circ}$
As OP = OR
$\Rightarrow \angle \mathrm{OPR}=\angle \mathrm{ORP}$
$\therefore \angle \mathrm{OPR}+\angle \mathrm{ORP}+\angle \mathrm{POR}=180^{\circ}$
$2 \angle \mathrm{OPR}+160^{\circ}=180^{\circ}$
$\Rightarrow \angle \mathrm{OPR}=10^{\circ}$
16.Ten prime numbers are

$$
\begin{aligned}
& 2,3,5,7,11,13,17,19,23,29 \\
& \text { Median }=\frac{\binom{10}{2} t h+\left(\begin{array}{c}
10 \\
2
\end{array}+1\right) t h+e r n}{2} 1 \\
& \quad=\frac{5 t h+6 t h+e r n}{2} \\
& =\frac{11+13}{2}=\frac{24}{2}=12
\end{aligned}
$$

17. Mark $\left(x_{i}\right)$

Frequency $\left(f_{i}\right) \quad f_{i} x_{2}$
$f_{i} x_{2}$
80
20
4
21
5 105
22
3 66
23
6
138
24
3 72
$25 \quad \frac{7}{\Sigma f_{i}=28} \quad \Sigma f_{i} x_{i}=\frac{175}{636}$
Mean $=\frac{\Sigma f i x i}{\Sigma f i}=\frac{636}{28}=22.71$
18. In a family there are four possibilities
(boy, boy), (boy, girl), (girl, boy), (girl, girl)
i.e $\mathrm{BB}, \mathrm{BG}, \mathrm{GB}, \mathrm{GG}$

Let A be an event 'At lest one girl'
$1 \therefore \mathrm{P}(\mathrm{A})=\frac{\text { No.of favourable out come }}{\text { Total out come }}=\frac{3}{4}$
19.Total consumption of water per day
$=4000 \times 150$ litres
$=\frac{4000 \times 150}{1000} \mathrm{~m}^{3}$
$=600 \mathrm{~m}^{3}$
Vol. of $\operatorname{tank}=20 \times 15 \times 6 \mathrm{~m}^{3}$

$$
=1800 \mathrm{~m}^{3}
$$

No. of days the water of the tank will last $=\frac{1800}{600}$
$=3$ days
20. Given, To prove, Construction, figure 2 Proof
21.

Given, To prove, Construction, figure
Using midpoint theorem,
Proof: $\mathrm{PQ}=\frac{1}{2} \mathrm{AC}$ and PQ II AC \qquad
and $\mathrm{SR}=\frac{1}{2} \mathrm{AC}$, SR II AC (2) 1
from (1) and (2) get
$P Q=S R$ and $P Q$ II SR
\therefore PQRS is a llgm
As ABCD is a rectangle
$\mathrm{AC}=\mathrm{BD}$

$$
\begin{aligned}
& \Rightarrow \frac{1}{2} A C=\frac{1}{2} B D \\
& \Rightarrow \mathrm{PQ}=\mathrm{QR}=\mathrm{RS}=\mathrm{SQ} \\
& \Rightarrow \mathrm{PQRS} \text { is a rhombus }
\end{aligned}
$$1

22. Given, To prove, Construction

Proof: As $\triangle A C B$ and $\triangle A C F$ are on the same base $A C$ and between the same parallel AC and BF

$$
\operatorname{ar}(\mathrm{ACB})=\operatorname{ar}(\mathrm{ACF})
$$

Adding ar (ACDE) to both sides, get
ar (ABCDE) $=\operatorname{ar}$ (AEDF)
\therefore ar (AEDF) $=$ ar (ABCDE)
23.

Proof: As $\angle \mathrm{ADC}=90^{\circ}$

$$
\begin{equation*}
\angle \mathrm{ABC}=90^{\circ} \tag{1}
\end{equation*}
$$

\therefore they are angle in the semi circle. 1
Now CD is the chord of this circle.
$\therefore \angle \mathrm{CAD}=\angle \mathrm{CBD}$

24. To construct a $\triangle X Y Z$

25. Volume of the earth to be dug out
$=$ Volume of the well
$=\frac{22}{7} \times \frac{7}{2} \times \frac{7}{2} \times 22.5 \mathrm{~m}^{3}$
$=866.25 \mathrm{~m}^{3}$
Area of the inner curved surface area

$$
\begin{align*}
& =2 \pi \mathrm{rh} \\
& =2 \times \frac{22}{7} \times \frac{7}{2} \times \frac{7}{2} \times 22.5 \mathrm{~m}^{2} \\
& =495 \mathrm{~m}^{2} \tag{1}
\end{align*}
$$

Value: - Social work adopted
26. As $2 \pi r=\frac{220}{7} \mathrm{~cm}$

$$
\begin{align*}
& \Rightarrow \mathrm{r}=\frac{220}{7 \times 2} \times \frac{7}{22}=5 \mathrm{~cm} \tag{1}\\
& \text { Volume of cone }=\frac{1}{3} \pi r^{2} \mathrm{~h} \\
&=\frac{1}{3} \times \frac{22}{7} \times 25 \times 12 \mathrm{~cm}^{3} \\
&=3.14 \times 100 \mathrm{~cm}^{3} \\
&=314 \mathrm{~cm}^{3}
\end{align*}
$$

27. (i) Draw neat and clean Histogram and represents given information
(ii) No of Lamps having a life time of more than 700 house $=74+62+48=184$ Lamps
28. Total numbers of bags $=5$
(i). P (more than 40 seeds in a bag) $=\frac{3}{5}=0.6$

1
(ii). No of bags in which 49 seeds germinated $=0$
$\therefore \mathrm{P}(49$ seeds in a bag $)=\frac{0}{5}=0$
(iii). P (more that 30 seeds in a bag) $=\frac{5}{5}=1$

OTBA (10 Marks)

Theme 1: Children obesity in India

29. (i) $x=8+(\mathrm{t}-1) \times 2$
$\Rightarrow x=2 \mathrm{t}+6$
$\begin{array}{lc}\text { (ii) } y=28+(t-1) \times 3 & 1^{1 / 2} \\ \Rightarrow y=3 t+25 & \end{array}$

$$
\begin{array}{lc}
\text { 30. } \quad x=\frac{y}{2^{2}}=>x=\frac{y}{4} & 1^{1 / 2} \\
\Rightarrow 4 x-y=0 & 1^{1 / 2}
\end{array}
$$

31. $8 x+10 y=200$
$\Rightarrow 4 x+5 y=100$
Draw Graph 2

Theme 2: Energy Consumption and Electricity Bill

29. Let the total units $=x<400$

1
$200 \times 5.40+(x-200) \times 5.41=1500 \quad 2$
30. $\frac{2 x(160)}{1000}+\frac{4 y(160)}{1000}=100$

$$
\Rightarrow x+2 y=312.5
$$

31. Let x be number of units and y be the electric charges.
For Delhi:
$y=2.15 x$
1
For Mumbai
$y=3.88 x$
1
For Kolkata
$y=5.69 x$
1
For Chennai $y=2.98 x \quad 1$
