Appendix 1

(PROOFSIN MATHEMATICS)

+»*Proofs are to Mathematics what calligraphy is to poetry.
Mathematical works do consist of proofs just as
poems do consist of characters.
— VLADIMIR ARNOLD <

A.1.1 Introduction

InClasses X, X and XI, we have learnt about the concepts of a statement, compound
statement, negation, converse and contrapositive of a statement; axioms, conjectures,
theorems and deductive reasoning.

Here, wewill discussvarious methods of proving mathematical propositions.

A.1.2 What isa Proof?

Proof of amathematical statement consists of sequence of statements, each statement
being justified with adefinition or an axiom or aproposition that isprevioudly established
by the method of deduction using only the allowed logical rules.

Thus, each proof isachain of deductive arguments each of which hasits premises
and conclusions. Many atimes, we prove aproposition directly from what isgivenin
the proposition. But sometimesit is easier to prove an equivalent proposition rather
than proving the proposition itself. This leads to, two ways of proving a proposition
directly or indirectly and the proofs obtained are called direct proof and indirect proof
and further each has three different ways of proving which is discussed below.
Direct Proof It isthe proof of aproposition in which we directly start the proof with
what isgiveninthe proposition.

(i) Straight forward approach Itisachain of argumentswhich leadsdirectly from
what isgiven or assumed, withthe help of axioms, definitions or already proved
theorems, to what is to be proved using rules of logic.

Consider thefollowing example:
Example 1 Show that if X* —5x+ 6 =0, thenx=3 or x = 2.
Solution x* —5x + 6 = 0 (given)
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(x—3) (x—2) = 0 (replacing an expression by an equal/equivalent expression)
X—3=0o0rx—2 =0 (from the established theorem ab = 0 = either a =0 or
b=0,fora binR)

= Xx-3+3=0+30r x—2+2=0+ 2 (adding equal quantitieson either side of the
eguation does not alter the nature of the
eguation)

= X+0=3o0orx+0=2 (using theidentity property of integers under addition)

= x=3orx=2(using the identity property of integers under addition)

Hence, x> —5x + 6 =0impliesx=3 or x = 2.

Explanation Let p bethe given statement “x?—5x + 6 = 0" and q bethe conclusion
statement “x =3 or x = 2".

From the statement p, we deduced the statement r:“(x — 3) (x — 2) = 0" by
replacing the expression x? — 5x + 6 in the statement p by another expression (x — 3)
(x—2) which is equal to x* —5x + 6.

There arise two questions:

() How does the expression (x — 3) (x — 2) is equal to the expression x> — 5x + 6?
(i) How can we replace an expression with another expression which is equal to
the former?

Thefirst oneisproved in earlier classes by factorization, i.e.,
X—BX+6=xX-3X-2X+6=X(X=-3) 2(X—=3) =(x—=3) (x—2).
The second oneis by valid form of argumentation (rules of logic)

Next this statement r becomes premises or given and deduce the statement s
“Xx—3=00rx—2=0" and the reasons are given in the brackets.

This process continuestill we reach the conclusion.

The symbolic equivalent of the argument is to prove by deduction that p = q
istrue.

Starting with p, wededucep=r = s= ... = g. Thisimpliesthat “p = " istrue.

U

Example 2 Prove that the functionf: R = R
defined by f(X) = 2x + 5isone-one.
Solution Note that afunction f is one-one if
f(x) =f(x) = X =X, (definition of one-one function)
Now, given that f(x) =f(x),i.e,2x+5=2x,+5
= 2x+ 5 -5 = 2x,+5-5 (adding the same quantity on both sides)
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= 2x+0=2x,+0
= 2x, = 2X, (using additiveidentity of real number)

2 2 o :
= 5 X = 5 X, (dividing by the same non zero quantity)
= Xl = XZ

Hence, the given function is one-one.
(ii) Mathematical Induction

Mathematical induction, isastrategy, of proving aproposition whichisdeductivein
nature. The whole basis of proof of this method depends on the following axiom:

For agiven subset Sof N, if
(i) thenatural number 1e S and
(i) thenatural number k + 1 € Swhenever ke S, then S=N.

According to the principle of mathematical induction, if a statement “S(n) istrue
for n=1" (or for some starting point j), and if “S(n) istruefor n=k” impliesthat “ S(n)
istrueforn=k+ 1" (whatever integer k> j may be), then the statement istrue for any
positiveinteger n, for all n>j.

We now consider some examples.

Example 3 Show that if

cosO sSno cosn® snno
A= —-sin® coso ,then A"= -snnO cosnO

Solution We have

[ cosn® snn6
P(n) - A ~|-snn6 cosn@
) [ cos® sin6
We note that P(1) : A= | —sin® cos 6

Therefore, P(1) is true.
Assume that P(K) is true, i.e.,

) cosk® sinko©
P(k) - A* = —-sink® cosk 0
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We want to prove that P(k + 1) is true whenever P(K) istrue, i.e.,

) cos(k+1)06 sn(k+1)6
. +1 —
PR+ 1A= _Gnk +1)0  cos (k+1) 0
Now Akl= Ak A
Since P(K) is true, we have
" cosk® snk®o cos® sino
A= —sink 6 cosk 6 —sin® cosO

[ cosk ©cosO—sink®sino cosk 6sin 6 +sin k 6 cosO
-sinkO®cosO—-coskOsin® —sinkOsin®+ cosk 0 cos0d

(by matrix multiplication)

[cos(k+1)0 sin(k+1)6
= | -sin(k +1)6 cos (k+1) e}

Thus, P(k + 1) is true whenever P(K) is true.

Hence, P(n) istruefor all n> 1 (by the principle of mathematical induction).
(iii) Proof by cases or by exhaustion

Thismethod of proving astatement p = qispossible only when p can be splitinto
severa cases, r, St (say) sothat p=r v s v t(where“ v ” isthe symbol for “OR”").

If the conditionals r=q;
S= (
and t=20

are proved, then (r v s v t) = @, isproved and so p = q is proved.

The method consists of examining every possible case of the hypothesis. It is
practically convenient only when the number of possible cases are few.

Example 4 Show that in any triangle ABC,
a=bcosC+ccosB

Solution Let p be the statement “ABC is any triangle” and q be the statement
“a=bcosC + ccosB”

Let ABC be atriangle. From A draw AD a perpendicular to BC (BC produced if
necessary).

Aswe know that any triangle has to be either acute or obtuse or right angled, we
can split p into three statementsr, sand t, where
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r : ABCisan acute angled triangle with £ C is acute.

s: ABCisan obtuse angled triangle with £ C is obtuse.

t: ABCisaright angled triangle with £ Cisright angle.
Hence, we prove the theorem by three cases.

When Z Cisacute (Fig. A1.1). A
From theright angled triangle ADB,
BD
AB =cosB c b
ie BD = AB cos B
=ccosB
. . B I_ C
From theright angled triangleADC, a D
cD Fig ALl
AC =cosC
i.e CD=ACcosC
=bcosC
Now a=BD + CD
=ccosB +bcosC .. (1)

When £ Cisobtuse (FigA1l1.2).
From theright angled triangle ADB,

BD
E =cosB
i.e BD = AB cos B
=ccosB

From theright angled triangle ADC,

CD
E = cos £ ACD
= cos (180° - C)
= —cosC
i.e CD=-ACcosC

= —bcosC
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Now a= BC=BD-CD
i.e. a= ccosB - (-bcosC)
a=ccosB+bcosC
When £ Cisaright angle (Fig A1.3).
Fromtheright angled triangle ACB,

BC
AB =cosB
ie BC=AB cosB
a=ccosB,
and b cos C = b cos 90°= 0. Fig A13
Thus, we may write a=0+ccosB
=bcosC+ccosB .. (3)

From (1), (2) and (3). We assert that for any triangle ABC,
a=bcosC+ccosB

By case (i), r = qis proved.

By case (ii), s= qis proved.

By case (iii), t = g is proved.

Hence, from the proof by cases, (r v s v t) = qisproved, i.e.,, p= qisproved.
Indirect Proof Instead of proving the given proposition directly, we establish the proof
of the proposition through proving a proposition which is equivalent to the given
proposition.

(i) Proof by contradiction (Reductio Ad Absurdum) : Here, we start with the
assumption that the given statement is false. By rules of logic, we arrive at a

conclusion contradicting the assumption and henceit isinferred that the assumption
iswrong and hence the given statement is true.

Let usillustrate this method by an example.
Example 5 Show that the set of all prime numbersisinfinite.

Solution Let Pbethe set of al prime numbers. We take the negation of the statement
“the set of all prime numbersisinfinite”, i.e., we assume the set of al prime numbers
to be finite. Hence, we can list all the prime numbersas P, P,, P,,..., P, (say). Note

3
that we have assumed that there is no prime number other than P, P,, P,,..., P, .

Now consider N = (P, P,P,...P) +1.. (1)
N isnotinthelist asN islarger than any of the numbersin thelist.

N iseither prime or composite.
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If N isaprime, then by (1), there exists a prime number which is not listed.

Ontheother hand, if N iscomposite, it should have aprime divisor. But none of the
numbersin the list can divide N, because they all leave the remainder 1. Hence, the
prime divisor should be other than the onein thelist.

Thus, in both the cases whether N is a prime or a composite, we ended up with
contradiction to the fact that we have listed all the prime numbers.

Hence, our assumption that set of all prime numbersisfiniteisfalse.
Thus, the set of al prime numbersisinfinite.

Observe that the above proof also uses the method of proof by cases.

(i) Proof by using contrapositive statement of the given statement

Instead of proving the conditional p = @, we prove its equivalent, i.e.,
~(g= ~p. (students can verify).
The contrapositive of aconditional can beformed by interchanging the conclusion
and the hypothesis and negating both.

Example 6 Prove that the functionf: R = R defined by f (xX) = 2x + 5 is one-one.

Solution A function is one-one if f(x) = f(x,) = X, = X..

Using thiswe haveto show that “2x +5=2x,+5" = "X =x,". Thisisof the form
p= g, where, pis2x+5=2x,+5and q: x, =X,. We have proved thisin Example 2
of “direct method”.

We can also prove the same by using contrapositive of the statement. Now
contrapositive of this statement is ~ q = ~ p, i.e., contrapositive of “ if f (x ) = f(x),
then x, = x,” is“if x, #x,, then f(x) # f(x,)".

Now X, #X,

= 2X, # 2X,

= 2X+ 5 #2X,+5
= f(x) #f(x).

Since“~q= ~p”, isequivaent to “p = " the proof is complete.

Example 7 Show that “if amatrix A isinvertible, then A isnon singular”.
Solution Writing the above statement in symbolic form, we have
p = g, where, pis“matrix A isinvertible” and qis“A isnon singular”

Instead of proving the given statement, we prove its contrapositive statement, i.e.,
if Aisnot anon singular matrix, then the matrix A isnot invertible.
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If A isnot anon singular matrix, then it meansthe matrix A issingular, i.e.,
IAl=0
adj A
|A

Then Al = doesnot exist as|A|=0

Hence, A isnot invertible.

Thus, we have proved that if A isnot anon singular matrix, then A is not invertible.

i.e,~q=-~p.

Hence, if amatrix A isinvertible, then A isnon singular.

(iii) Proof by a counter example
In the history of Mathematics, there are occasions when all attempts to find a
valid proof of astatement fail and the uncertainty of thetruth value of the statement
remainsunresolved.

Insuch asituation, itisbeneficial, if wefind an exampleto falsify the statement.
The exampleto disprove the statement is called a counter example. Since the disproof
of aproposition p = qismerely aproof of the proposition ~ (p = (). Hence, thisis
also amethod of proof.

Example 8 For each n, 2% lisaprime (ne N).
This was once thought to be true on the basis that

27 1=+ l1=5isaprime.
22 1=2+1=17isaprime.

27 1=2%+1=257isaprime,
However, at first sight the generalisation looksto be correct. But, eventually it was

shown that 27 1=2%+1=14294967297
which isnot aprime since 4294967297 = 641 x 6700417 (aproduct of two numbers).

So the generalisation “For each n, 2% 1 isaprime(ne N)” isfase.

Just thisone example 27 1issufficientto disprovethegeneralisation. Thisisthe
counter example.

Thus, we have proved that the generalisation “For each n,2" 1 is a prime
(ne N)” isnot true in general.
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Example 9 Every continuous function is differentiable.
We consider some functions given by

i) f(x) =x
(i) g(x) =€
(i) h(x) =sinx

These functions are continuous for all values of x. If we check for their
differentiability, we find that they are all differentiable for all the values of x. This
makes usto believethat the generalisation “ Every continuousfunctionisdifferentiable”
may betrue. But if we check the differentiability of the function given by “¢ (x) = | x|’
which is continuous, we find that it is not differentiable at x = 0. This means that the
statement “ Every continuous function is differentiable” is false, in general. Just this
onefunction“ ¢ (x) = | X|” is sufficient to disprove the statement. Hence, “¢ (x) = | x|
iscalled acounter exampleto disprove“ Every continuous function is differentiable”.

K/
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