Long Answer Questions

Q1. Define symmetric and skew symmetric matrices. Prove that every square can be expressed as a sum of symmetric and skew symmetric matrices.

Or
Define determinant of a matrix and using the properties of determinants Prove that

$$
\left|\begin{array}{ccc}
1+a^{2}-b^{2} & 2 a b & -2 b \\
2 a b & 1-a^{2}+b^{2} & 2 a \\
2 b & -2 a & 1-a^{2}-b^{2}
\end{array}\right|=\left(1+a^{2}+b^{2}\right)^{3}
$$

06 marks

Q2. Define differentiability and continuity of a function. What is the relationship between them, justify your answer.

Or

If $(x-a)^{2}+(y-b)^{2}=c^{2}$ for some $c>0$, prove that

$$
\frac{\left[1+\left(\frac{d y}{d x}\right)^{2}\right]^{3 / 2}}{\frac{d^{2} y}{d x^{2}}}, \text { is a constant independent of } a \text { and } b!
$$

6 marks

Q3. Evaluate $\int e^{a x} \sin b x d x$
Hence, deduce $I=\frac{e^{a x}}{\sqrt{a^{2}+b^{2}}} \sin \left(b x+\tan ^{-1} \frac{b}{a}\right)+c$
Or
Define definite integral of a function and find the area under $\mathrm{y}=\left(x+\mathrm{c}^{2 x}\right)$ between the limits 0 and 4 :

Q4. Determine graphically the minimum value of the objective function $Z=-50 x+20 y$ subject to the constraints.

$$
2 x-y \geq-5,3 x+y \geq 3,2 x-3 y \leq 12, \quad x \geq 0, y \geq 0
$$

Or

One kind of cake requires 200 kg of flour and 25 g of fat and another kind of requires 100 g of flour and 50 g of fat. Find the maximum number of cakes which can be made from 5 Kg of flour and 1 Kg of ft assuming that there is no shortage of the other ingredients used in making the cakes.
Q5. Define skew lines. Find the shortest distance between two skew lines with equations
$r=\vec{a}_{1}+\pi \vec{b}_{1}$ and
$r=\vec{a}_{2}+\mu \vec{b}_{2}$ in vector form
Or

For any two vectors \vec{a} and \vec{b}

$$
|\vec{a}+\vec{b}| \leq|\vec{a}|+|\vec{b}| \text { prove it and if }|\vec{a}+\vec{b}|=|\vec{a}|+|\vec{b}| \text {, than what happens? }
$$

6 marks

Short Answer Type Questions

Q6 Define bijective function and show that the function $\mathrm{F}: \mathrm{R} \rightarrow \mathrm{R}$ defined $\operatorname{byf}(x)=x^{3}+1$ is a bijection.

Q7. Define reflexive, symmetric and transitive relation with an example to each.
4 marks
Q8. Using elementary transformation. Find the inverse of $\left|\begin{array}{ll}2 & 3 \\ 5 & 7\end{array}\right|$.
4 marks

Q9. State Lagrange's. Mean value theorem and interpret geometrically.
4 marks
Q10 The side of a square sheet of metal is increasing at the rate of 4 cm per minute. At what rate is the area increasing when the side is 8 cm long?

4 marks

Q11. Evaluate $\int \frac{1}{1+\tan x} d x$
4 marks

Q12 Find the equation of tangent and normal to the curve $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ at $\left(x_{0}, y_{0}\right)$.
4 marks
Q13. Find the equation of the plane passing through the points $(1,2,3)$ and perpendicular to the plane

$$
\begin{aligned}
& 2 x+3 y+4 z-5=0 \\
& 4 x+6 y+8 z-15=0
\end{aligned}
$$

4 marks
Q14. Prove by vector method an angle in a semi circle is a right angle.
4 marks
Q15. Two cards are drawn at random and without replacement from a pack of 52 playing cards. Find the probability that both the cards are black.

4 marks

Very Short Answer Type

Q16. If $\tan ^{-1} \frac{x-1}{x-2}+\tan ^{-1} \frac{x+1}{x+2}=\frac{\pi}{4}$, then find the value of x.
2 marks

Q17. Find x and y if,

$$
2\left|\begin{array}{ll}
1 & 3 \\
0 & 2
\end{array}\right|+\left|\begin{array}{ll}
y & 0 \\
1 & 2
\end{array}\right|=\left|\begin{array}{ll}
5 & 6 \\
1 & 8
\end{array}\right|
$$

2 marks

Q18. Is the function defined by

$$
f(x)=\left\{\begin{array}{ll}
x+5, & \text { if } x \leq 1 \\
x-5 & \text { if } x>1
\end{array}\right\}, \text { a continuous function } \quad 2 \text { marks }
$$

Q19. Find $\frac{d y}{d x}$ if $2 x+3 y=\sin y \quad 2$ marks
Q20. Evaluate $\int \sec x d x \quad 2$ marks
Q21. State $2^{\text {nd }}$ fundamental theorem of integral calculus.
2 marks

Q22. Solve $x y \frac{d y}{d x}=\mathrm{e}^{x}$
2 marks

Q23. Prove that the scalar product between the given vector is commutative
$\vec{a}=a_{1} \hat{i}+a_{2} \hat{j}$
$\vec{b}=b_{1} \hat{i}+b_{2} \hat{j}$
\forall
$\mathrm{a}_{1} \mathrm{~b}_{1} \in \mathrm{R}$
$\mathrm{a}_{2} \mathrm{~b}_{2} \in \mathrm{R}$

Q24. A die is rolled, if the outcome is an even number. What is the probability that it is prime number?

Q25. Evaluate $\mathrm{P}(\mathrm{A} \cup \mathrm{B})$
If $2 P(A)=P(B)=\frac{5}{13}$
and $\mathrm{P}\left(\frac{A}{B}\right)=\frac{2}{5}$
2 marks

Objective Type questions

Q26. When two coins are tossed, what is the probability of at most two heads?
a) 1
b) -1
c) 0
d) None of this

1 mark
Q27. If A and B are two $\mathrm{n} \times \mathrm{n}$ non-singular matrices, then
a) AB is non-singular
b) AB is singular
c) $(\mathrm{AB})^{-1}=\mathrm{A}^{-1} \mathrm{~B}^{-1}$
d) $(\mathrm{AB})^{-1}$ does not exist
1 mark

Q28. If $y=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots \ldots .+\infty$ then $\frac{d y}{d x}=$
a) 0
b) 1
c) x
d) y
1 mark

Q29. $\frac{d}{d x}\left(\tan ^{-1} x+\cos ^{-1} x\right)$ is equal to
a) $\frac{1}{1+x^{2}}$
b) 0
c) $\frac{-1}{1+x^{2}}$
d) None of these 1 mark

Q30. $\int \frac{d x}{\sin ^{2} x \cos ^{2} x}$ is equal to
a) $\tan x+\cot x+c$
b) $\tan x-\cot x+c$
c) $\tan x+\cot 2 x+c$
d) $\tan x-\cot 2 x+c$
1 mark

Q31. $\int \frac{1}{e^{x}+1} d x$ is equal to
a) $\log \left(e^{x}+1\right)+c$
b) $\log \left(1+e^{x}\right)+c$
c) $-\log \left(1+e^{-x}\right)+\mathrm{c}$
d) None of these
1 mark

Q32. The differential equation of all circles of radius a is of order
a) 2
b) 3
c) 4
d) none of these
1 mark

Q33. $|\mathrm{a} \times \mathrm{b}|$ is equal to
a) $a b \sin \theta$
b) $\mathrm{ab} \cos \theta$
c) $a b \sin \theta \hat{n}$
d) none of these
1 mark

Q34. Solution of the differential equation $\mathrm{Xdy}-\mathrm{Ydx}=0$ represents
a. A rectangular hyperbola
b. A straight line passing through origin
c. Parabola whose vertex is at the origin
d. Circle whose centre is at the origin

Q35. If $\mathrm{A}+\mathrm{B}$ are independent events $\mathrm{P}(\mathrm{A} \cup \mathrm{B})$ is equal to
a) $P(A)+P(B)$
b) $\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A} \cap \mathrm{B})$
c) $\mathrm{P}(\mathrm{A}) \cdot \mathrm{P}(\mathrm{B})$
d) None of these
1 mark

